Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN

Academic Year 2019-2020

Program:	B E – CIVIL Engineering
Semester :	6
Course Code:	17CV64
Course Title:	Water Supply and Treatment Engineering
Credit / L-T-P:	3/ 3-0-0
Total Contact Hours:	50
Course Plan Author:	PRIYANKASHRI K N

Academic Evaluation and Monitoring Cell

#29 HESARAGATTA MAIN ROAD, CHIMNEY HILLS CHIKKABANAVARA POST BANGALORE-560090 Phone -080-23721477/28392221 <u>W/W/W.skit.org</u>, EMAIL:Skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	5
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	
C. COURSE ASSESSMENT	8
1. Course Coverage	8
2. Continuous Internal Assessment (CIA)	8
D1. TEACHING PLAN - 1	9
Module - 1	9
Module – 2	
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	•
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	•
b. Assignment – 3	
F. EXAM PREPARATION	25
1. University Model Question Paper	
2. SEE Important Questions	
Course Outcome Computation	
Academic Year:	
Odd / Even semester	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CV
Year / Semester :	2020/VI	Academic Year:	2019-20
Course Title:	Water Supply and Treatmen Engineering	t Course Code:	17CV64
Credit / L-T-P:	3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	PRIYANKASHRI K N	Sign	Dt:
Checked By:	SHIVAPRASAD D G	Sign	Dt:
CO Targets	CIA Target : 85%	SEE Target:	80%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng Hours	Concepts	Learning Levels
1	Introduction: Need for protected water supply. Demand of Water: Types of water demands -domestic demand, industrial, institutional and commercial, public use, fire demand, Factors affecting percapita demand, Variations in demand of water, Peak factor, Design period and factors governing design period.Different methods of population forecasting -with merits and demerits. Numerical Problems.		Water demand Population forecasting	L3
	Water Treatment: Objectives, Treatment flow chart – significance of each unit Sources and Characteristics: surface and subsurface sources -suitability with regard to quality and quantity. Sampling Objectives, methods, Preservation techniques. Water quality characteristics: Physical, Chemical and Microbiological.		Water Sources, quality parameters analysis	L3
	Sedimentation -theory, settling tanks, types, design. Concept of Plate and Tube settlers. Coagulation aided sedimentation- types of coagulants, chemical feeding, flash mixing, Clarri flocculators . Filtration: mechanism -theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning. Operational problems in filters. Design of slow and rapid sand filter without under drainage system. Ultra and micro filtration: Basic principles, membrane materials, pore size, flux, normalizing permeability, fouling mechanism, Overview of ultra and micro filtration elements and systems, Fouling in MF/UF systems, fouling control and pretreatment.		Sedimentation tank, Filtration unit	L3
	Softening: Overview of Lime soda, Zeolite process, RO and Nano filtration: Basic principles, Flux, Salt passage, rejection and concentration polarization. Overview of RO and nanofiltration membranes and elements, Conventional pre- treatment techniques for RO and nano filtration. Disinfection: Methods of disinfection with merits and demerits, Theory of disinfection, emphasis on treatment of water for community bathing. (melas and fairs) Fluoridation and De-fluoridation.		Softening process Disinfection methods	L3
5	Collection and Conveyance of water: Intake structures - types of intakes –Factors to be considered in selection of intake structures.		Conveyance of water	L3

	Pumps: Types of pumps with working principles. Numerical		Distribution of	
	Problems.		water	
	Pipes: Design of the economical diameter for the rising main;			
	Numerical Problems. Pipe appurtenances, Valves, Fire			
	hydrants			
	Pipe materials: Different materials with advantages and			
	disadvantages. Factors affecting selection of pipe material.			
	Distribution system: Methods- Gravity, Pumping, Combined			
	gravity and pumping system, Service reservoirs and their			
	capacity determination. Visit to Intake structure, Water			
	treatment plant and report working of each unit Design of			
	water treatment plant units and distribution system with			
	population forecasting for the given city			
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

2 Research' Recent develo	nments on the concepts – i	publications in journals; conferences etc.
J. Rescaren: Recent develo		publications in journais, conterences etc.

Deldits		Availability
	IN DOOK	
	-	-
	3, 4	In Lib / In Dept
M/s Khanna Publishers, New Delhi 2010		
	2, 4	In Lib⁄ In dept
	-	-
	1,2,3	In Lib
	1,2,3	In Lib
	1,2,3,4	In lib
	-	-
	1,2	
	1,2	
	1,2	
	2,3	
	2,3	
	2,3	
https://youtu.be/d0x1A80fxdw	2,3,4	
	2,3,4	
https://youtu.be/cvUa82Qb1Hg	2,3,4	
https://youtu.be/_iz8ZkjD7z8	2,3,4	
Lab :		
Software Tools for Design	-	-
	-	-
	-	-
https://youtu.be/zVZ9c6EXfTA		
	Details Text books (Title, Authors, Edition, Publisher, Year.) S.K.Garg, Environmental Engineering vol-1, Water supply Engineering – M/s Khanna Publishers, New Delhi 2010 Mark.J Hammer, Water & Waste Water Technology, John Wiley & Sons Inc., New York, 2008. Reference books (Title, Authors, Edition, Publisher, Year.) B.C. Punmia and Ashok Jain, Environmental Engineering I-Water Supply Engineering, Laxmi Publications (P)Ltd., New Delhi 2010. Howard S. Peavy, Donald R. Rowe, George T, Environmental Engineering - McGraw Hill International Edition. New York, 2000 CPHEEO Manual on water supply and treatment engineering, Ministry of Urban Development, Government of India, New Delhi Concept Videos or Simulation for Understanding https://youtu.be/zVZ9c6EXfTA https://youtu.be/ZVZ9c6EXfTA https://youtu.be/XTkW5_I-NAO https://youtu.be/MfkJu7J1LE4 https://youtu.be/dCimAH5IRSA https://youtu.be/dCimAH5IRSA https://youtu.be/cVJa82Qb1Hg https://youtu.be/_iz8ZkjD7z8 Lab :	in bookText books (Title, Authors, Edition, Publisher, Year.)-S.K.Garg, Environmental Engineering vol-1, Water supply Engineering -3. 4M/s Khanna Publishers, New Delhi 20103. 4Mark. J Hammer, Water & Waste Water Technology, John Wiley & Sons2. 4Inc., New York, 2008.2. 4Reference books (Title, Authors, Edition, Publisher, Year.)-B.C. Punmia and Ashok Jain, Environmental Engineering I-Water Supply1.2.3Engineering, Laxmi1.2.3Publications (P)Ltd., New Delhi 2010.1.2.3Howard S. Peavy, Donald R. Rowe, George T, Environmental Engineering, Ministry of1.2.3Urban Development, Government of India, New Delhi1.2.3.4Concept Videos or Simulation for Understanding-https://youtube/ZVZgc6EXfTA1.2https://youtube/ZVZgc6EXfTA1.2https://youtube/ZVZgc6EXfTA1.2https://youtube/ZVRgc6EXfTA1.2https://youtube/ZVRgc6EXfTA2.3https://youtube/ZVRgc6EXfTA2.3https://youtube/ClimAHgIRSA2.3.4https://youtube/ClimAHgIRSA2.3.4https://youtube/ClimAHgIRSA2.3.4https://youtube/climAHgIRSA2.3.4https://youtube/La8ZkJD7z82.3.4Lab:Software Tools for Design-Recent Developments for Research-https://youtube/bZHAwF4cxjk-https://youtube/bZHAwF4cxjk-https://youtube/bZHAwF4cxjk-https://youtube/bZHAwF4cxjk-https://youtube/bZHAwF4cxjk- </td

2 https://youtu.be/wl7uvQThX8A

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Ctudante must have	loornt the fellowing	Courses / Topics wit	a decaribed Content
Sludenis musi nave	learne iollowing	Courses / Topics wit	h described Content

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms		
ules	Code					Level		
1		Water supply and treatment engineering	1. Knowledge on water treatment and supply	2		L3		
	-		4. Knowledge of water Demand and water quality	-	Plan Gap Course	L3		

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Water demand / Knowledge of water	Higher	Gap	Understa
	requirements	Study	A seminar on water demands for	nd L2
			the public	
1	Population forecasting/Knowledge	Higher	A seminar on population	Understa
	different forecasting methods	Study	forecasting methods	nd L2
2	Sources of water/Knowledge of quantity	Higher	A seminar on different surface and	Understa
	and quality of water	Study	subsurface sources	nd L2
3	Water quality standards/Knowledge of	Higher	A seminar on physical and	Understa
	characteristics of water	Study	chemical biological	nd L2
			characteristics of water	
4	Design of Treatment units/Knowledge of	Higher	A seminar on conventional water	Understa
	conventional treatment methods	Study	treatment methods	nd L2
5	Conveyance of water/Knowledge of	Higher	A seminar on water distribution	Understa
	distribution system	Study	networks	nd L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	17CV64.1	Analyze the variation of water	5	Water	Lecture	CIA	L3
		demand and to estimate water		demand			Apply
		requirement for a community.					
2	17CV64.2	Evaluate water quality and	5	Water	Lecture	CIA	L3
		environmental significance of		Quality			Apply
		various parameters and plan		analysis			
		suitable treatment system					
3		To design disinfection treatment		Disinfection	Lecture	CIA	L3
		units in the treatment plant in the		methods			Apply
		water supply system					
4	17CV64.4	Evaluate the sources and	5	Conveyanc	Lecture	CIA	L3
		conveyance systems for raw and		e of water			Apply

		treated water					
5		Design a comprehensive water treatment and distribution system to purify and distribute water to the required quality standards.	•	Distribution of water	Lecture	CIA	L3 Apply
-	-	Total	50	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	variation of water demand and to estimate water requirement for a community.	CO1	L3
1	Forecast the population by using different methods	CO2	L3
2	Identify sources of water, quantitatively and qualitatively and make appropriate	CO3	L3
	choice for a community		
2	Analysis of physical chemical biological characteristics of water	CO4	L4
3	water quality and environmental significance of various parameters and plan	CO5	L3
	suitable treatment system		
3	To design various treatment units in the treatment plant in the water supply system	CO6	L4
4	To design various treatment units in the treatment plant in the water supply system	CO7	L4
4	Design various treatment units in the treatment plant	CO8	L4
5	Sources and conveyance of raw and treatment water	CO9	L2
5	To supply portable water the public	CO10	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

_			mplish il.		
Mod	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to find the solution for water independence for an entire city	L3
1	CO1	PO2		The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to solve the total amount of water needed for a city by population forecasting	L3
1	CO1	PO3	1	The students will be able to design the water demand of a city in such a way that it will cater all the environmental/ public health needs	L3
1	CO2	PO1	1	The students will be able to analyse the water quality of a surface or ground water body and develop strategies for improving them in concern with the public health/ environmental concern	L4
1	CO2	PO2	2	The students will be able to analyse the water quality of a surface or ground water body and develop strategies for improving them in con	L3
2	CO3	PO1	1	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid treatment methods to complex pollution scenarios	
2	CO3	PO2		The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyze the characteristics of water	L4
2	CO4	PO3		The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyze the characteristics of water and suggest suitable treatment methods	L4
2	CO4	PO1	2	The students will be able to identify different types of pollutants and	L2

				provide a solution by their environmental application to meet the	
				specifications with consideration for the public health and safety, and the cultural, societal, and environmental considerations	
3	CO5	PO3	3	The students will be able to apply the knowledge of physical chemical and biological characteristics of water to know strength of water	L2
3	CO5	PO4	2	The students will be able to design individual treatment units in concern with the environment	L3
3	CO6	PO3	3	The students will be able to initiate the design solutions for rapid and slow sand filters in such a way that it will be cost effective and efficient	L3
3	CO6	PO4	2	The students will be able to design individual treatment units in concern with the environment	L3
4	CO7	PO3	3	The students will be able to initiate the design solutions for softening units in such a way that it will be cost effective and efficient	L4
4	CO7	PO4	2	The students will be able to design individual treatment units in concern with the environment	L4
4	CO8	PO1	1	The students will be able to use research-based knowledge and research methods including design of units, analysis and interpretation of data, and synthesis of the information to provide valid disinfection treatment methods to complex pollution scenarios	
4	CO8	PO2	2	The students will be able to apply the knowledge of biological characteristics of water to know strength of water in the disinfection unit	L4
5	CO9	PO1	1	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyse and solve the complex water network system for a community/city	L3
5	CO9	PO2	2	The students will be able to design water network system by analyzing the layout of the city and available water sources	L3
5	CO10	PO1	1	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyse and solve the complex water distribution system for a city	L3
5	CO10	PO2	2	The students will be able to design water distribution network system by analyzing the layout of the city and available water sources	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes					P	rogi	ram	η Οι	utco	me	s					-
Mod	CO.	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Ρ	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	01 2	O1	02	О3	el
1	17CV64.1	Analyze the variation of water demand and to estimate water requirement for a community.		2	1	-	-	-	-	-	-	-	-	-	-	-	-	L3
1	17CV64.2	To understand the methods of population forecasting to meet water demands for a community		2	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
2	17CV64.3	Evaluate available sources of water, quantitatively and qualitatively and make appropriate choice for a community.		2	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
2	17CV64.4	Evaluate water quality and environmental significance of various parameters and plan suitable treatment system		2	-	-	-	-	-	-	-	-	-	-	-	-	-	L4
3	17CV64.5	Design settling tank and coagulation tank to remove particles to get safe and potable water Supply.		-	3	2	-	-	-	-	-	-	-	-	-	-	-	L3
3	17CV64.6	Design Different types of filters to	-	-	3	2	-	-	-	-	-	-	-	-	-	-	-	L4

		remove particles to get safe and potable water Supply.																
4	17CV64.7	To design Hardness removal units in the treatment plant in the water supply system		-	3	2	-	-	-	-	-	-	-	-	-	-	-	L4
4	17CV64.8	To design disinfection treatment units in the treatment plant in the water supply system		2	-	-	-	-	-	-	-	-	-	-	-	-	-	L4
5	17CV64.9	Evaluate the sources and conveyance systems for raw and treated water		2	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
5	17CV64.10	Design a comprehensive water treatment and distribution system to purify and distribute water to the required quality standards.		2	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
-	CS501PC	Average attainment (1, 2, or 3)	2.5	2.5	1.5	1.5	-	-	-	-	-	-	-	-	-	-	-	L2- L4
-	PO, PSO	1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and Su 10.Communication; 11.Project M S1.Software Engineering; S2.Data B	ex i istc 1an	Prol aina age	bler bilit eme	ns; ;y; ent	5.M 8.E ar	ode thic id	ern cs; Fir	Too 9.li nan	l Us ndiv ce;	age vidu 12	г; 6. al	The an	e En Id	gin Tec	eer ımx	and vork;

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

-	Total	50	1	1		5	5	10	_	-
	water:									
5	Collection and Conveyance of	10	-	-	4	1	1	2	CO9, CO10	L4, L5
4	Softening	10	-	2	-	1	1	2	CO7, C08	L2, L3
3	Coagulation aided sedimentation	10	-	2	-	1	1	2	CO5, CO6	L3, L4
2	Water Treatment	10	2	-	-	1	1	2	CO3, CO4	L2, L3
	water supply									
1	Introduction: Need for protected	10	2	-	-	1	1	2	CO1, CO2	L1, L2
						Ŭ	Asg			
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
Mod	Title Teach. No. of question in Exam							CO	Levels	

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1,2	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L1, L2, L3,
3,4	CIA Exam – 2	15	CO5, CO6, CO7, C08	L1, L2, L3,
5	CIA Exam – 3	15	CO9, CO10	L1, L2, L3,
1,2	Assignment - 1	05	CO1, CO2, CO3, CO4	L1, L2, L3,
3,4	Assignment - 2	05	CO5, CO6, CO7, CO8	L1, L2, L3,
5	Assignment - 3	05	CO9, CO10	L1, L2, L3,
1,2	Seminar - 1	05	CO1, CO2, CO3, CO4	L1, L2, L3,
3,4	Seminar - 2	05	CO5, CO6,CO7,CO8	L1, L2, L3,
5	Seminar - 3	05	CO9, CO10	L1, L2, L3,
	Other Activities – define – Slip test		CO1 to Co9	L1, L2, L3,
	Final CIA Marks	20	-	

D1. TEACHING PLAN - 1

	Mod	lule	- 1
--	-----	------	-----

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes	-	Bloom
-	The student should be able to:	-	Level
1	Analyze the variation of water demand and to estimate water requirement for a community.	CO1	L3
2	To understand the methods of population forecasting to meet water demands for a community	CO2	L3
	Course Calendaria		
b Nasa Na	Course Schedule Module Content Covered	- CO	- Level
		C01	
1 2	Introduction: Need for protected water supply Demand of Water: Types of water demands -domestic demand,	C01 C01	L3 L3
	industrial, institutional and commercial, public use,	C01 C01	L3 L3
3	fire demand,	C01 C01	-
4		C01 C01	L3 L3
<u>5</u> 6	Factors affecting percapita demand, Variations in demand of water	CO1 CO2	-
-	Peak factor,	CO2 CO2	L3
7			L3
8	Design period and factors governing design period	CO2	L3
9	Different methods of population forecasting with merits and demerits	CO2	L3
10	Numerical Problems.	CO2	L3
с	Application Areas	со	Level
1	Demand of water in water supply scheme	CO1	L3
2	Forecasting population to meet public demands	CO2	L3
d	Review Questions	-	-
1	Explain necessity of water supply scheme	CO1	L1
2	Explain the various types of water demand.	CO1	L3
3	What is meant by per capita demand?	CO2	L2
4	Mention the factors that affect per capita demand	CO2	L4
5	What is meant by design period? Discuss the factors affecting design period.	CO2	L2
6	Define population forecasting	CO2	L3
7	Explain methods of population Forecasting	CO2	L2
8	Describe the incremental method of estimating the population of a locality.	CO2	L3
9	Describe the incremental method of estimating the population of a locality.	CO2	L3
10	Describe the incremental method of estimating the population of a locality.	CO1	L1
11	Explain briefly about Peak factor	CO1	L3
12	Discuss the environmental pollution due to human activities.	CO2	L2
13	What is meant by per capita demand? List and discuss the factors that affect the per capita	CO2	L3
	demand.	00-	1 -
14	The following is the population data of a city available from past census records. Determine	CO2	L2
	the future population of the city in 2030 by i) Arithmetical increase method and ii) Geometrical increase method.		
	Year Population		
	1960 25,000		
	1970 28,000		
	1980 34,000		
	1990 42,000		
			1

	2000	47,000			
15	The pop Year 1980 1990 2000 2010	ulation of a tow populatio 30000 36000 45000 53000		CO2	L3
16	Compute populati	e the populatio	n of the year 2000 and 2006 for a city whose 930 was 25,000 and in the year 1970 was 47,000. Make se method.	CO2	L3
е	Experier	nces		-	-
1	_				
2					
3					
4					
5					

Module – 2

Title:	Divide and Conquer	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Evaluate available sources of water, quantitatively and qualitatively and make appropriate choice for a community.	CO1	L3
2	Evaluate water quality and environmental significance of various parameters and plan suitable treatment system	CO2	L3
b	Course Schedule	-	-
Class N	Module Content Covered	СО	Level
17	Water Treatment: Objectives	CO1	L3
18	Water quality characteristics: Physical	CO1	L3
19	Water quality characteristics: Chemical	CO2	L3
20	Water quality characteristics: Microbiological	CO2	L3
21	Treatment flow chart significance of each unit	CO2	L3
22	Sources and Characteristics: surface and subsurface sources suitability with regard to quality and quantity.	CO2	L3
23	Sampling techniques.	CO2	L3
24	Sampling Objectives,	CO2	L3
25	Sampling methods, Preservation	CO2	L3
С	Application Areas	СО	Level
1	To find suitable water sources qualitatively and quantitatively	CO1	L3
2	To supply portable water to water supply scheme	CO2	L3
		CO2	
d	Review Questions	CO2	-
12	Write the desirable limits for the following parameters as per BIS : 10500 — 1991 : i) Color ii) pH iii) Total hardness iv) Nitrate v) Total dissolved solids vi) Iron vii) Fluoride viii) Chloride ix) Alkalinity x) Turbidity.	CO1	L1
13	Explain in brief grab sampling and composite sampling.	CO1	L3
14	In a water treatment plant the pH values of incoming and outgoing water are 7.2 and 8.4 respectively. Find average value of pH, assuming linear variation of pH with time.	CO2	L2

15	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator	CO1	L4
16	Mention the permissible limits for the following parameters and explain the environmental significance of each : Hardness, Nitrate, Fluorides and Iron.	CO1	L2
17	Write a note on properties of whole some water.	CO2	L3
18	Briefly explain the water borne diseases and their control.	CO2	L2
19	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	CO2	L3
20	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	CO2	L3
21	Explain with chemical equations, what happens when alum is added to water?	CO2	L3
22	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min.	CO2	L2
23	Explain the significance of the following impurities with respect to quality of water: i) Turbidity ii) Hardness iii) Fluoride iv) Nitrate	CO2	L3
24	Explain the multiple fermentation tube test.	CO1	L2
25	Write a note on water borne diseases and their control.	CO1	L3
26	Enumerate the various physical and chemical characteristics of testing of raw water supplies	CO2	L2

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (Code:	17CV64	Sem:6	1	Marks:	30	Time: 7	5 minute	S	
Cour			ply and trea		<u> </u>					
-	-	Note: Ans	wer all que	stions, ead	ch carry equa	al marks. M	1odule : 1, 2	Marks	СО	Level
1	а	Explain ne	ecessity of w	/ater suppl	y scheme			8	CO1	L1
	b	Explain the	e various ty	pes of wate	er demand.			7	CO1	L2
					OR				CO2	
2	а	Mention th	ne factors th	nat affect p	er capita der	nand		8	CO2	L2
		What is n period.	neant by d	esign peri	od? Discuss	the factor	s affecting desig	n 7	CO2	L3
									CO2	
3		— 1991 : i)	Color ii) pH	iii) Total ha		rate v) Tota	as per BIS : 10500 al dissolved solids	8	CO2	L2
		populatior		1930 was	25,000 and ii		a city whose 1970 was 47,000.	7	CO2	L2
					OR					
4		Explain wi water?	th chemical	equations	s, what happe	ens when a	lum is added to	7	CO3	L2
		Design the the raw wa	e dimensior ater supplie	is of a suita s. Take det	able rectangı	ular sedime period of 4	c plant is 8 MLD. Entation tank for hours and the	8	CO4	L2

			Mo	odel Assignme	nt Question	S				
Course	17CV64	Sem:	Sem: 6		Marks: 5 / 10 Tim	6 Marks: 5 / 10 T			0 – 120 minutes	
Code:										
Course:	Water su	oply and ti	reatment e	engineering						
Note: Each	n student t	o answer 2	2-3 assign	ments. Each as	signment c	arries equal	mark.			
SN	lo	Assignment Description				Marks	со	Level		
1		Explain necessity of water supply scheme			5	CO2	L3			
2		Explain the various types of water demand.			5	CO1	L3			

3	What is meant by percapita demand?	5	CO2	L3
4	Mention the factors that affect per capita demand	5	CO2	L3
5	What is meant by design period? Discuss the factors affecting design period.	5	CO2	L3
6	Define population forecasting	5	CO2	L3
7	Explain methods of population Forecasting	5	CO2	L3
8	Describe the incremental method of estimating the population of a locality.	5	CO2	L3
9	Describe the incremental method of estimating the population of a locality.	5	CO2	L3
10	Describe the incremental method of estimating the population of a locality.	5	CO1	L3
11	Explain briefly about Peak factor	5	CO1	L3
12	Discuss the environmental pollution due to human activities.	5	CO2	L3
13	What is meant by per capita demand? List and discuss the factors that affect the per capita demand.	5	CO2	L3
9	The following is the population data of a city available from past census records. Determine the future population of the city in 2030 by i) Arithmetical increase method and ii) Geometrical increase method.YearPopulation196025,000197028,000198034,000199042,000200047,000	5	CO2	L3
10	The population of a town is as below	5	CO2	L3
	Year population			
	1980 30000			
	1990 36000			
	2000 45000			
	2010 53000			
11	Compute the population of the year 2000 and 2006 for a city whose population in the year 1930 was 25,000 and in the year 1970 was 47,000. Make use of geometric increase method.	5	CO2	L3
12	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO2	L3
13	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO1	L3
14	Explain with chemical equations, what happens when alum is added to water?	5	CO2	L3
15	Explain the method of sampling of water.	5	CO2	L3
16	 Write the desirable limits for the following parameters as per BIS : 10500 — 1991 : i) Color ii) pH iii) Total hardness iv) Nitrate v) Total dissolved solids vi) Iron vii) Fluoride viii) Chloride ix) Alkalinity x) Turbidity. 	5	CO2	 L3
17	Explain in brief grab sampling and composite sampling.	5	CO2	L3
18	In a water treatment plant the pH values of incoming and outgoing water are 7.2 and 8.4 respectively. Find average value of pH, assuming linear variation of pH with time.	5	CO2	 L3
19	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator	5	CO2	L3

	- -			
20	Mention the permissible limits for the following parameters and explain the environmental significance of each : Hardness, Nitrate, Fluorides and Iron.	5	CO2	L3
21	Write a note on properties of whole some water.	E	CO1	L3
22	Briefly explain the water borne diseases and their control.	<u>5</u> 5	CO1 CO1	L3
	Give complete sequence of a water treatment plant with a		CO1 CO2	L3
23	flow diagram and mention the function of each treatment unit.	5		
24	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO2	L3
25	Explain with chemical equations, what happens when alum is added to water?	5	CO2	L3
26	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min.	5	CO2	L3
27	Explain the significance of the following impurities with respect to quality of water: i) Turbidity ii) Hardness iii) Fluoride iv) Nitrate	5	CO2	L3
28	Explain the multiple fermentation tube test.	5	CO1	L3
29	Write a note on water borne diseases and their control.	5	CO2	L3
30	Enumerate the various physical and chemical characteristics of testing of raw water supplies	5	CO2	L3
31	Give the drinking water standards for the following parameters. Discuss their effect when they exceed their limits : i) Turbidity ii) Hardness iii) Chlorides iv) Fluoride.	5	CO2	L3
32	Explain the method of sampling of water.	5	CO2	L3
33	Briefly explain the complete treatment process of a water supply scheme with flow chart.	5	CO2	L3
34	Write short notes on : a. Fire hydrants. b. Pressure release valve. c. Metering in distribution system. d. Jar test	5	CO2	L3
35	Explain necessity of water supply scheme	5	CO2	L3
36	Explain the various types of water demand.	5	CO1	L3
37	What is meant by percapita demand?	5	CO2	 L3
38	Mention the factors that affect per capita demand	5	CO2	 L3
39	What is meant by design period? Discuss the factors affecting design period.	5	CO2	L3
40	Define population forecasting	5	CO2	L3
41	Explain methods of population Forecasting	5	CO2	 L3
41 42	Describe the incremental method of estimating the population of a locality.	5	CO2	L3
43	Describe the incremental method of estimating the population of a locality.	5	CO2	L3
44	Describe the incremental method of estimating the population of a locality.	5	CO1	L3
45	Explain briefly about Peak factor	5	CO1	L3
45	Discuss the environmental pollution due to human activities.	5	CO1	 L3
47	What is meant by per capita demand? List and discuss the factors that affect the per capita demand.	5	CO2	L3
48	The following is the population data of a city available from past census records. Determine the future population of the city in 2030 by i) Arithmetical increase method and ii) Geometrical increase method.YearPopulation	5	CO2	L3

	1960	25,000			
	1970	28,000			
	1980	34,000			
	1990	42,000			
	2000	47.000			
49	The popu	lation of a town is as below	5	CO2	L3
	Year	population			
	1980	30000			
	1990	36000			
	2000	45000			
	2010	53000			
50	whose po	the population of the year 2000 and 2006 for a city pulation in the year 1930 was 25,000 and in the year 47,000. Make use of geometric increase method.	5	CO2	L
51	Give com	aplete sequence of a water treatment plant with a ram and mention the function of each treatment unit.	5	CO2	La
52	Give com flow diag	plete sequence of a water treatment plant with a ram and mention the function of each treatment unit.	5	CO1	L
53	Explain w added to	vith chemical equations, what happens when alum is water?	5	CO2	L
54		ne method of sampling of water. desirable limits for the following parameters as per	5	CO2 CO2	L
55	BIS : 1050 i) Color ii) solids vi)	00 — 1991 : pH iii) Total hardness iv) Nitrate v) Total dissolved Iron vii) Fluoride viii) Chloride ix) Alkalinity x) Turbidity.	5		L:
56		brief grab sampling and composite sampling.	5	CO2	(
57	outgoing	r treatment plant the pH values of incoming and water are 7.2 and 8.4 respectively. Find average value suming linear variation of pH with time.	5	CO2	L
58		eration? with neat sketches, explain slat tray aerator ing bed aerator	5	CO2	L
59	and expla	the permissible limits for the following parameters ain the environmental significance of each : Hardness, luorides and Iron.	5	CO2	L3
60		ote on properties of whole some water.	5	CO1	L
61		plain the water borne diseases and their control.	5	CO1	L
62		plete sequence of a water treatment plant with a ram and mention the function of each treatment unit.	5	CO2	L
63	Give com	plete sequence of a water treatment plant with a ram and mention the function of each treatment unit.	5	CO2	L
64		rith chemical equations, what happens when alum is	5	CO2	L
65	is 8 MLD. sediment	mum daily demand at a water purification tank plant Design the dimensions of a suitable rectangular ation tank for the raw water supplies. Take detention od of 4 hours and the depth of 3.0mts. The velocity of cm/min.	5	CO2	Lź
66		plete sequence of a water treatment plant with a ram and mention the function of each treatment unit.	5	CO2	La
67	Give com	plete sequence of a water treatment plant with a	5	CO2	Lź
68	Explain w	ram and mention the function of each treatment unit. vith chemical equations, what happens when alum is	5	CO2	La
00	added to	water?		1 1	

Copyright ©2017. cAAS. All rights reserved.

70	Write the desirable limits for the following parameters as per BIS : 10500 — 1991 : i) Color ii) pH iii) Total hardness iv) Nitrate v) Total dissolved solids vi) Iron vii) Fluoride viii) Chloride ix) Alkalinity x) Turbidity.	5	CO2	L2
71	Explain in brief grab sampling and composite sampling.	5	CO2	L2
72	In a water treatment plant the pH values of incoming and outgoing water are 7.2 and 8.4 respectively. Find average value of pH, assuming linear variation of pH with time.	5	CO2	L2
73	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator	5	CO2	L2
74	Mention the permissible limits for the following parameters and explain the environmental significance of each : Hardness, Nitrate, Fluorides and Iron.	5	CO2	L2
75	Write a note on properties of whole some water.	5	CO2	L2
76	Briefly explain the water borne diseases and their control.	5	CO2	L2
77	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO2	L2
78	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO2	L2
79	Explain with chemical equations, what happens when alum is added to water?	5	CO2	L2
80	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min.	5	CO2	L2

ment to be assigned to each student.

D2. TEACHING PLAN - 2

Module - 3

8	Ultra and micro filtration: Basic principles, membrane materials, pore size, flux, normalizing permeability,	CO3	L3
7	cleaning Operational problems in filters. Design of slow and rapid sand filter without under drainage system.	CO3	L3
6	slow sand, rapid sand and pressure filters including construction, operation,	CO4	L3
5	Clarri flocculators	CO3	L2
4	chemical feeding, flash mixing,	CO4	L2
3	Filtration: mechanism theory of filtration, types of filters,	CO3	L2
2	Coagulation aided sedimentation types of coagulants,	CO4	L2
1	Sedimentation theory, settling tanks, types, design. Concept of Plate and Tube settlers.	CO3	L2
Class No	D Module Content Covered	СО	Level
b	Course Schedule		
	and potable water Supply.		
2	water Design physical, chemical and biological treatment methods to ensure safe	CO4	L3
1	Study drinking water quality standards and to illustrate qualitative analysis of	CO3	L2
-	The student should be able to:	-	Level
а	Course Outcomes	-	Blooms
	Divide and Conquer	Appr Time:	16 Hrs

1	Design of water and wastewater units	CO1	L3
2	Ultra and micrifiltration techniques in treatment process	CO2	L4
d	Review Questions	-	-
1	Briefly explain the complete treatment process of a water supply scheme with flow chart.	CO3	L3
2	What is Aeration? Explain the types of aerators.	CO4	L3
3	Describe briefly the various constituents of coagulation — sedimentation plant.	CO3	L3
4	Define sedimentation ow that settlement of the particles in sedimentation unit is independent of depth.	CO4	L3
5	Explain the method of determining optimum dosage of coagulant with the aid of neat sketch.	CO3	L3
6	A circular sedimentation fitted with standard mechanical sludge removal is to handle 5 million litres/day of sewage. Take detention period as 5 hr and depth of tank as 3 m. Find the dia. of the tank.	CO4	L3
7	Define filtration. Explain the principle underlying filtration process.	CO3	L3
8	List and explain the various operating problems during the filtration process.	CO4	L3
9	a. Explain in detail the theory of filtration.	CO3	L3
10	With the help of a neat sketch, explain the working of Rapid gravity filter	CO4	L3
11	Explain with a neat sketch working of a pressure filter	CO3	L3
12	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	CO4	L3
13	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	CO3	L3
14	Explain with chemical equations, what happens when alum is added to water?	CO4	L3
15	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	CO3	L3
16	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	CO3 CO4	L3
е	Experiences	-	-
1			
2			
3			
4			
5			

Module – 4

Title:	Divide and Conquer	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	To design various treatment units in the treatment plant in the water supply system	CO5	L2
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Softening: Overview of Lime soda,	CO5	L2
2	Zeolite process, RO and Nano filtration:	CO5	L2

		00-	
3	Basic principles, Flux, Salt passage,	CO5	L2
4	rejection and concentration polarization.	CO5	L2
5	Overview of RO and nano filtration membranes and elements,	CO5	L2
6	Conventional pretreatment techniques for RO and nano filtration.	CO5	L2
7	Disinfection: Methods of disinfection with merits and demerits,	CO5	L2
8	emphasis on treatment of water for community bathing. (melas and fairs)	CO5	L2
9	Theory of disinfection,	CO5	L2
10	Fluoridation and Defluoridation	CO5	L2
с	Application Areas	со	Leve
1	To design water and wastewater treatment plant	CO5	L3
2	To provide safe and portable water to public	CO5	 L3
d	Review Questions	_	_
1	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	CO5	L3
2	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	CO5	L3
3	Briefly explain Zeolite process of hardness removal	CO5	L3
4	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	CO5	L3
5	What is aeration? Explain the type of aerators.	CO5	L3
6	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each	CO5	L3
7	With the help of a neat sketch, explain the working of Rapid gravity filter.	CO5	L3
8	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	CO5	L3
9	Explain briefly the following processes : i) Break point chlorination ii) Superchlorination.	CO5	L3
10	Mention the methods of softening the water. Describe zeolite process of softening water in detail	CO5	L3
11	explain briefly : i) Defluoridation ii) Desalination.	CO5	L3
12	With sketches, explain briefly dead end system and grid iron system of distribution networks.	CO5	L3
13	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator.	CO5	L3
14	How you will determine the optimum coagulant dosage in Lab using Jar test apparatus? Discuss with sketch.	CO5	L3
15	Determine quantity of alum needed to treat 13 million litres of water per day in treatment plant. The dosage of alum12mg/f. Also find amount of CO2 released per liter of water treated. Assume molecular weight of At = 26.97, S = 32.066, 0 = 16, H = 1.008	CO5	L3
16	write explanatory note on : i) Ozone treatment ii) UV treatment iii) Chlorination iv) Electro — Katadyn process v) Treatment with KMn04.	CO5	L3
17	Write the comparison between soda lime process and Zeolite process of softening of water techniques	CO5	L3
	Explain the terms pre — chlorination, post chlorination, Break point	CO5	L3
18	chlorination and Super chlorination.		_
18 19		CO5	L3

	per litre and chlorine demand of the water.		
е	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code	17CV64	Sem:	6	Marks:	30	Time: 7	5 minute	S	
Cour	rse:	Water sup								
-	-				ach carry equa			Marks	со	Level
1		chlorinatio	n and Sup	er chlorin	ation.		on, Break point	8	CO5	L3
	b	Chlorine us 8kg/day. T dosage in 1	7	CO5	L3					
					OR				CO5	
2	a						Rapid gravity filter.	8	CO5	L3
	b	Population fpcd ;Rate the breadt	to be serv of filtratior h.= 0, 2 Ass	/ed = 5000 n = 180 litre sume max	imum demano	er capita d ength of e d as 1.8 tim		7	CO5	L3
3	a	write expla	natory no					8	CO5	L3
5	u	i) Ozone tre	eatment ii)	UV treatr		; v) Treatm	ent with KMn04.		005	
	b		compariso	n betweer			Zeolite process of	7	CO5	L3
					OR				CO5	
4	a	With the h	elp of a ne	at sketch,	explain the w	orking of F	Rapid gravity filter.	8	CO5	L3
	b	Population fpcd ;Rate the breadt	to be serv of filtratior h.= 0, 2 Ass	/ed = 5000 n = 180 litre sume max	imum demano	er capita d ength of e d as 1.8 tim		7	CO5	L3

b. Assignment – 2

	Model Assignment Questions										
Crs Code:	17CV64	Sem:	6	Marks:	5 / 10	Time:	90 - 120) – 120 minutes			
Course:	Water sı	ater supply and treatment engineering									
								-			
SN	0		Assig	Inment De	scription		Marks	со	Level		
1		Briefly explain the complete treatment process of a water supply scheme with flow chart.						CO5	L3		
2		What is Aeration? Explain the types of aerators.						CO5	L3		
3		Describe briefly the various constituents of coagulation — sedimentation plant.					- 5	CO5	L3		
4		Define sedimentation ow that settlement of the particles in sedimentation unit is independent of depth.				5	CO5	L3			
5	5 Explain the method of determining optimum dosage of coagulant with the aid of neat sketch.				5	CO5	L3				
6 A circular sedimentation fitted with standard mechanical sludge removal is to handle						5	CO5	L3			

	5 million litres/day of sewage. Take detention period as 5 hr and depth of tank as 3 m. Find the dia. of the tank.			
7	Define filtration. Explain the principle underlying filtration process.	5	CO5	L3
8	List and explain the various operating problems during the filtration process.	5	CO5	L3
9	a. Explain in detail the theory of filtration.	5	CO5	L3
10	With the help of a neat sketch, explain the working of Rapid gravity filter	5	CO5	L3
11	Explain with a neat sketch working of a pressure filter	5	CO5	L3
12	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	5	CO5	L3
13	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO5	L3
9	Explain with chemical equations, what happens when alum is added to water?	5	CO5	L3
10	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	5	CO5	L3
11	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
12	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO5	L3
13	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO5	L3
14	Briefly explain Zeolite process of hardness removal	5	CO5	L3
15	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	5	CO5	3
16	What is aeration? Explain the type of aerators.	5	CO5	L3
17	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each	5	CO5	L3
18	With the help of a neat sketch, explain the working of Rapid gravity filter.	5	CO5	L3
19	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
20	Explain briefly the following processes : i) Break point chlorination ii) Superchlorination.	5	CO5	L3
21	Mention the methods of softening the water. Describe zeolite process of softening water in detail	5	CO5	L3
22	explain briefly : i) Defluoridation ii) Desalination.	5	CO5	L3
23	With sketches, explain briefly dead end system and grid iron system of distribution networks.	5	CO5	L3

	· · · · · · · · · · · · · · · · · · ·			
24	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator.	5	CO5	L3
25	How you will determine the optimum coagulant dosage in Lab using Jar test apparatus? Discuss with sketch.	5	CO5	L3
26	Determine quantity of alum needed to treat 13 million litres of water per day in treatment plant. The dosage of alum12mg/f. Also find amount of CO2 released per liter of water treated. Assume molecular weight of At = 26.97, S = 32.066, 0 = 16, H = 1.008	5	CO5	L3
27	write explanatory note on : i) Ozone treatment ii) UV treatment iii) Chlorination iv) Electro — Katadyn process v) Treatment with KMn04.	5	CO5	L3
28	Write the comparison between soda lime process and Zeolite process of softening of water techniques	5	CO5	L3
29	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO5	L3
30	Briefly explain Zeolite process of hardness re	5	CO5	L3
31	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO5	L3
32	Define filtration. Explain the principle underlying filtration process.	5	CO5	L3
33	List and explain the various operating problems during the filtration process.	5	CO5	L3
34	a. Explain in detail the theory of filtration.	5	CO5	L3
35	With the help of a neat sketch, explain the working of Rapid gravity filter	5	CO5	L3
36	Explain with a neat sketch working of a pressure filter	5	CO5	L3
37	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	5	CO5	L3
38	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO5	L3
39	Explain with chemical equations, what happens when alum is added to water?	5	CO5	L3
40	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	5	CO5	L3
41	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
42	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO5	L3
43	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO5	L3
44	Briefly explain Zeolite process of hardness removal	5	CO5	L3
45	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	5	CO5	L3

46	Describe briefly the various constituents of coagulation — sedimentation plant.	5	CO5	L3
47	Define sedimentation ow that settlement of the particles in sedimentation unit is independent of depth.	5	CO5	L3
48	Explain the method of determining optimum dosage of coagulant with the aid of neat sketch.	5	CO5	L3
49	A circular sedimentation fitted with standard mechanical sludge removal is to handle 5 million litres/day of sewage. Take detention period as 5 hr and depth of tank as 3 m. Find the dia. of the tank.	5	CO5	L3
50	Define filtration. Explain the principle underlying filtration process.	5	CO5	L3
51	List and explain the various operating problems during the filtration process.	5	CO5	L3
52	a. Explain in detail the theory of filtration.	5	CO5	L3
53	With the help of a neat sketch, explain the working of Rapid gravity filter	5	CO5	L3
54	Explain with a neat sketch working of a pressure filter	5	CO5	L3
55	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	5	CO5	L3
56	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO5	L3
57	Explain with chemical equations, what happens when alum is added to water?	5	CO5	L3
58	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	5	CO5	L3
59	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
60	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO5	L3
61	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO5	L3
62	Briefly explain Zeolite process of hardness removal	5	CO5	L3
63	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	5	CO5	L3
64	What is aeration? Explain the type of aerators.	5	CO5	L3
65	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each	5	CO5	L3
66	With the help of a neat sketch, explain the working of Rapid gravity filter.	5	CO5	L3
67	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3

	Explain briefly the following processes : i) Break point chlorination ii) Superchlorination.	5	CO5	L3
69	Mention the methods of softening the water. Describe zeolite process of softening water in detail	5	CO5	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Divide and Conquer	Appr Time:	16 Hrs
а	Course Outcomes	-	Bloom
-	The student should be able to:	-	Level
1	Evaluate the sources and conveyance systems for raw and treated water	CO5	L3
2	Design a comprehensive water treatment and distribution system to purify and distribute water to the required quality standards.	CO5	L3
b	Course Schedule		
ass No	o Module Content Covered	СО	Leve
1	Collection and Conveyance of water: Intake structures	CO5	L4
2	types of intakes Factors to be considered in selection of intake structures.	CO5	L4
3	Pumps: Types of pumps with working principles.	CO5	L4
4	Pipe appurtenances, Valves, Fire hydrants	CO5	L4
5	Distribution system: Methods	CO5	L4
6	Gravity, Pumping, Combined gravity and pumping system, Service reservoirs and their capacity determination.	CO5	L4
7	Visit to Intake structure, Water treatment plant and report working of each unit	CO5	L4
8	Design of water treatment plant units and distribution system with population forecasting for the given city	CO5	L4
9	Pipe materials: Different materials with advantages and disadvantages. Factors affecting selection of pipe material	CO5	L4
10	Numerical Problems.	CO5	L4
с	Application Areas	со	Leve
1	Collection and conveyance of water and waste water	CO5	L3
2	Design of pipes and pumps	CO5	L4
d	Review Questions	-	-
1	With a neat sketch, explain the radial system and dead end system used in distribution networks.	CO5	L1
2	With a sketch, explain : i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.	CO5	L3
3	Write short notes on any Four of the following : b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint.	CO5	L2
4	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	CO5	L4
5	What is aeration? Explain the type of aerators.	CO5	L2
6	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each.	CO5	L5
7	Write explanatory notes with sketch on the following : a.Firehydrant. b. Air valves. c. Sluice valves. d. Pressure relief valves	CO5	L2
	the different layout of distribution system and explain the Grid iron distribution		

9	Explain fluoridation and defluoridation in detail.	CO5	L4
10	Explain the Sluice valve used usually in distribution system with a neat sketch.	CO5	L1
11	a. Explain briefly : i) Defluoridation ii) Desalination.	CO5	L4
12	Write short notes on : a. Fire hydrants. b. Pressure release valve. c Metering in distribution system. d. Jar test.	CO5	L1
13	Briefly explain the complete treatment process of a water supply scheme with flow chart	CO5	L3
14	Explain the method of sampling of water.	CO5	L2
15	Give the drinking water standards for the following parameters. Discuss their effect when they exceed their limits : i) Turbidity ii) Hardness iii) Chlorides iv) Fluoride.	CO5	L4
16	Enumerate the various physical and chemical characteristics of testing of raw water supplies.	CO5	L2
17	Write short notes on any four of the following : a. Five demands of water b. Infiltration Gallery c. Indicator organism. d. Air Binding e. Nalgonda technique f. Nomograms.	CO5	L5
18	With sketches, explain briefly dead end system and grid iron system of distribution networks.	CO5	L2
19	With a neat sketch, explain the radial system and dead end system used in distribution networks.	CO5	L3
20	With a sketch, explain : i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.	CO5	L4
е	Experiences	-	-
1			
2			
3			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Cour Code		17CV64	Sem:	4	Marks:	30	Time:	75 minute	S	
Cour	rse:	Water supp	ly and treat	ment engine	ering	1				
-	-	Note: Answ	ver all quest	ions, each c	arry equal	narks. Mo	dule : 5	Marks	CO	Level
1	а	With a neat in distribution networks.		lain the radi	al system ar	nd dead er	nd system used	8 k	CO5	L3
	b	i) Ground le ii) Air valve iii) Pressure	Vith a sketch, explain : Ground level storage reservoir (GLSR) Air valve) Pressure relief valve) Post fire hydrant.							L3
					OR				CO5	
2	а		Write explanatory notes with sketch on the following : a.Firehydrant. b. Air valves. c. Sluice valves. d. Pressure reliefvalves						CO5	L3
	b	the differen distribution			ystem and e	explain the	Grid iron	7	CO5	L3
									CO5	
3	а	Infiltration G		licator organ			nands of water algonda	b. 8	CO5	L3
	b	With sketch distribution		briefly dead	end system	and grid i	ron system of	7	CO5	L3
					OR				CO5	
4	а	What is aer	ation? Expla	in the type o	of aerators.			8	CO5	L3
	b	Describe th	e various m		stribution of	water and	discuss the	7	CO5	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

			Мс	odel Assignme	nt Questi	ons			
Course Code:	17CV64	Sem:	6	Marks:	5	Time: g	0 – 120 minutes		
Course:	Water su	pply and tr	eatment e	engineering					
SNo			Α	ssignment De	scription	l	Marks	СО	Level
1 With a post			at sketch explain the radial system and dead and			E	COF	12	

1	With a neat sketch, explain the radial system and dead end system used in distribution networks.	5	CO5	L3
2	With a sketch, explain : i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.	5	CO5	L3
3	Write short notes on any Four of the following : b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint.	5	CO5	L3
4	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" ofdefluoridation.	5	CO5	L3
5	What is aeration? Explain the type of aerators.	5	CO5	L3
6	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each.	5	CO5	L3
7	Write explanatory notes with sketch on the following : a.Firehydrant. b. Air valves. c. Sluice valves. d. Pressure relief valves	5	CO5	L3
8	the different layout of distribution system and explain the Grid iron distribution system in detail.	5	CO5	L3
9	Explain fluoridation and defluoridation in detail.	5	CO5	L3
10	Explain the Sluice valve used usually in distribution system with a neat sketch.	5	CO5	L3
11	a. Explain briefly : i) Defluoridation ii) Desalination.	5	CO5	L3
12	Write short notes on : a. Fire hydrants. b. Pressure release valve. c Metering in distribution system. d. Jar test.	5	CO5	L3
13	Briefly explain the complete treatment process of a water supply scheme with flow chart	5	CO5	L3
9	Explain the method of sampling of water.	5	CO5	L3
10	Give the drinking water standards for the following parameters. Discuss their effect when they exceed their limits : i) Turbidity ii) Hardness iii) Chlorides iv) Fluoride.	5	CO5	L3
11	Enumerate the various physical and chemical characteristics of testing of raw water supplies.	5	CO5	L3
12	Write short notes on any four of the following : a. Five demands of water b. Infiltration Gallery c. Indicator organism. d. Air Binding e. Nalgonda technique f. Nomograms.	5	CO5	L3
13	With sketches, explain briefly dead end system and grid iron system of distribution networks.	5	CO5	L3
14	With a neat sketch, explain the radial system and dead end system used in distribution networks.	5	CO5	L3
15	With a sketch, explain : i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post firhydrant.	5	CO5	L3
16	With a neat sketch, explain the radial system and dead end system used in distribution networks.	5	CO5	L3

17	With a sketch, explain : i) Ground level storage reservoir (GLSR)	5	CO5	L3
	ii) Air valve iii) Pressure relief valve			
	iv) Post fire hydrant.			
18	Write short notes on any Four of the following : b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint.	5	CO5	L3
19	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" ofdefluoridation.	5	CO5	L3
20	What is aeration? Explain the type of aerators.	5	CO5	L3
21	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each.	5	CO5	L3

F. EXAM PREPARATION

1. University Model Question Paper

Course:		Water supply a	/ Year	May /2018						
Course		17CV64 Sem: 6 Marks: 100 Time:							180	
Code:										tes
Mod ule	Note	Answer all FIV	E full questior	ns. All questic	ons carry equ	al marks.		Marks	со	Level
1	а	Explain neces	sity of water s	upply schem	е			6	CO1	L1
	b	Explain the va						5	CO2	L2
	С	Mention the fa	ictors that affe	ect per capita	demand			4	CO1	L2
				OR						
2	а	What is mear period.	nt by design	period? Disc	uss the fact	ors affecting	g design	6	CO2	L3
	b	Write the desi — 1991 : i) Colo vi) Iron vii) Fluo	or ii) pH iii) Tota oride viii) Chloi	al hardness iv ride ix) Alkalir) Nitrate v) To nity x) Turbidi	otal dissolved ty.	d solids	5	CO3	L2
	С	Compute the population of the year 2000 and 2006 for a city whose population in the year 1930 was 25,000 and in the year 1970 was 47,000. Make use of geometric increase method.							CO4	L2
		a Explain with chemical equations, what happens when alum is added to							<u> </u>	
3	а	water?						8	CO3	L2
	b	The maximum Design the din the raw water depth of 3.0ml	8	CO4	L2					
				OR						
4	а	With the help of a neat sketch, explain the working of Rapid gravity filter.								L3
	b	Design six slow sand filters beds from the following data : Population to be served = 50000 persons ; Per capita demand = 150 fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.						8	CO4	L3
	а	With the help	of a neat skot	ch ovolain th	e working of	Danid gravit	v filtor	8	CO3	L3
4	b	Design six slov Population to I fpcd ;Rate of fi the breadth.= 0 daily demand. by.	w sand filters be served = 50 ltration = 180), 2 Assume m	peds from the 2000 persons Litres/hr/sq.n naximum den that one unit	e following d s; Per capita n; Length of nand as 1.8 til	ata : demand = 15 each bed = 7 mes the ave	io Twice rage	8	CO3	L3 L3
				OR						

Б	2	write explanatory note on :	8	CO5	10
5	а	i) Ozone treatment ii) UV treatment	0	005	L3
		iii) Chlorination iv) Electro — Katadyn process v) Treatment with KMn04.			
	b	Write the comparison between soda lime process and Zeolite process of	8	CO5	L3
		softening of water techniques	0	005	L)
6	а	With the help of a neat sketch, explain the working of Rapid gravity filter.	8	CO5	L3
-	b	Design six slow sand filters beds from the following data :	8	CO5	L3
		Population to be served = 50000 persons ; Per capita demand = 150			Ŭ
		fpcd ;Rate of filtration = 180 litres/hr/sq.m ; Length of each bed = Twice			
		the breadth.= 0, 2 Assume maximum demand as 1.8 times the average			
		daily demand. Also assume that one unit, out of six, will be kept as stand			
		by.			
		OR			
7	а	With a neat sketch, explain the radial system and dead end system used	8	CO3	L3
		in distribution			
		networks.			
	b	With a sketch, explain :	8	CO3	L3
		i) Ground level storage reservoir (GLSR)			
		ii) Air valve			
		iii) Pressure relief valve			
		iv) Post fire hydrant.			
		Or			
8	а	Write explanatory notes with sketch on the following : a.Firehydrant. b. Air	8	CO4	L3
		valves. c. Sluice valves. d. Pressure reliefvalves			
	b	the different layout of distribution system and explain the Grid iron	8	CO4	L3
		distribution system in detail.			
		OR			
9	а	Write short notes on any four of the following : a. Five demands of water b.	8	CO5	L3
		Infiltration Gallery c. Indicator organism. d. Air Binding e. Nalgonda			
		technique f. Nomograms.			
	b	With sketches, explain briefly dead end system and grid iron system of	8	CO5	L3
		distribution networks.			
10	а	What is aeration? Explain the type of aerators.	8	CO5	L3
	b	Describe the various methods of distribution of water and discuss the	8	CO5	L3
		advantages and disadvantages of each.			

2. SEE Important Questions

Cour	ourse: Water supply and treatment engineering Month /							/ Year	May /2018	
Crs C	Code:	17CV64	Sem:	6	Marks:	100	Time:		180 mi	nutes
	Note Answer all FIVE full questions. All questions carry equal marks.								-	
	Qno.	Important Qu	estion					Marks	со	Year
ule										
1	1	Explain neces	ssity of water s	supply scheme	е			16 /	CO1	2004
								20		
	2	Explain the va	arious types o	f water demar	nd.				CO1	2004
	3	What is mear	nt by percapita	a demand?					CO1	2004
	4	Mention the f		CO1	2007					
	5	What is mea		CO1	2007					
		period.								
	6	Define popula	ation forecasti	ng.Explain me	thods of po	pulation Fored	casting		CO1	
2	1	The population	on of a town is	as below				16 /	CO2	2005
		Year	population					20		
		1980	30000							
		1990	36000							
		2000	45000							

		2010	53000						
	2	Compute the	population of		and 2006 for and in the year 19			CO3	2005
				rease method.	ia in the year 19	70 was 47,000.			
	3			of a water treatr	ment plant with ent unit.	a flow diagram		CO2	2009
	4			of a water treatr	nent plant with ent unit.	a flow diagram		CO2	2006
	5	Explain with ch water?	nemical equa	ations, what ha	ppens when alu	m is added to		CO2	2004
								CO2	
3	1	with flow char	t.			r supply scheme	16 / 20		2006
	2	What is Aeration	on? Explain t	he types of aeı	rators.			CO2	2006
	3	Describe brief plant.	ly the variou	s constituents	of coagulation	 sedimentation 		CO2	2007
	4	Define sedime unit is indeper			of the particles	in sedimentation		CO2	2004
	5	Explain the me the aid of neat		ermining optim	um dosage of c	oagulant with		CO2	2004
	6	A circular sedi is to handle 5 I and depth of t		CO2	2004				
4	1	Determine the required for a litres per day p	dimensions population o per person. A	of a set of rapi f 50,000 with a ssume a peak		gnoring wash	16 / 20	CO2	2004
	2	Give complete	e sequence c		ment plant with			CO3	2004
	3	Explain with cł water?	nemical equa	ations, what ha	ppens when alu	m is added to		CO3	2006
	4	Design the din the raw water	nensions of a supplies. Tak	a suitable recta	urification tank p ngular sedimen ne period of 4 ho cm/min	tation tank for		CO3	2004
	5	Design six slov Population to I fpcd ;Rate of fi the breadtho,	w sand filters be served = g ltration = 180 2 Assume ma	beds from the 50000 persons litres/hr/sq.m aximum demai	following data ; Per capita den ; Length of eac	hand = 150 h bed = Twice he average daily		CO3	2007
5	1		supply of wa r. e. Break po		ater connection.		16 / 20	CO4	2009
	2		by defluoric		with a line diagr	am the		CO4	2007
	3			he type of aera	tors.			CO4	2007
	4		arious metho	ods of distribut	ion of water and	discuss the			2004
	5	Write explanat	ory notes wi		e following : a.F elief valves	irehydrant.		CO4	2005
	6		yout of distri	ibution system	and explain the	Grid iron		CO4	2015

Course Outcome Computation

Academic Year:																
Odd / Even semester																
INTERNAL TEST				T1					٦	Γ2					T3	
Course Outcome	CO1		CO2		CO3		CO4		CO5		CO6		C07		CO8	
	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV
MAX MARKS																
USN-1																
USN-2																
USN-3																
USN-4																
USN-5																
USN-6																
Average CO Attainment																

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49% CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome Weight of CO - PO	PO1	PO3	PO3	PO1	PO12	PO12	PO6	PO1
Course Outcome	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8
Test/Quiz/Lab		T1			T2		Т	3
QUESTION NO	Q1	L Q2 LV V	Q3 LV	Q1 LV	Q2 LV	Q3 LV	Q1 LV	Q2 LV
MAX MARKS								
USN-1								
USN-2								
USN-3								
USN-4								
USN-5								
USN-6								
Average CO Attainment								